

+918988885050 +918988886060 www.vajiraoinstitute.com info@vajiraoinstitute.com

YOJANA MAGAZINE ANALYSIS (February 2025)

(Part 1/4)

TOPICS TO BE COVERED

PART 1/4

- PM KUSUM: EMPOWERING FARMERS WITH SOLAR ENERGY
- ENERGY SECURITY IN INDIA

PART 2/4

- INDIAN CARBON MARKETS
- SMART CITIES MISSION & ROLE OF ENERGY EFFICIENCY

PART 3/4

- SCOPE & OPPORTUNITIES FOR RENEWABLE ENERGY IN RURAL INDIA
- GREEN HYDROGEN

PART 4/4

- BIOFUELS AS A PROMISING SUBSTITUTE FOR HIGH CARBON ENERGY SOURCE
- PRAGATI: DRIVING INDIA'S DEVELOPMENT WITH PURPOSE

ADDRESS:

PM KUSUM: EMPOWERING FARMERS WITH SOLAR ENERGY

- Agriculture is a cornerstone of India's economy, ensuring food security, employment, and economic growth.
- However, the sector faces challenges such as dependency on fossil fuels, high electricity costs, and groundwater depletion.
- To address these issues and promote sustainable practices, the Pradhan Mantri

Kisan Urja Suraksha Evam Utthaan Mahabhiyan (PM-KUSUM) was launched in

March 2019.

- The primary goal of this initiative is to integrate **solar energy** into farming, thereby boosting agricultural productivity while reducing environmental impact.
- As of now, India has installed over 5,02,000 solar pumps, cutting down CO2

emissions by 1.02 million tonnes annually.

ENERGY USE IN AGRICULTURE

• Agriculture in India has traditionally relied on groundwater for irrigation, especially since

the Green Revolution, which expanded the irrigated area.

ADDRESS:

- While this has helped increase agricultural productivity, the reliance on dieselpowered pumps and electricity for irrigation has significantly contributed to rising energy consumption.
- In fact, energy use in agriculture now accounts for 8-11% of India's total carbon emissions.
- In recent years, subsidized electricity for farmers has further exacerbated the problem.
- While it supports farmers in the short term, it has led to over-extraction of groundwater, which is a growing concern for long-term water security and agricultural sustainability.
- As the demand for energy in farming increases, there is a pressing need for cleaner, more efficient energy sources.

OBJECTIVES & COMPONENTS

The PM-KUSUM scheme aims to achieve 34.8 GW of solar capacity installation by March

2026. The initiative is structured into three key components:

• Component-A: Solar Power Plants (500 kW to 2 MW) will be set up to provide clean

energy and reduce dependency on conventional grid power.

ADDRESS:

- 8
- Component-B: Standalone Solar-Powered Irrigation Pumps will be installed to help farmers who lack access to reliable power sources. These pumps operate independently of the grid, reducing operational costs.
- Component-C: Solarising Existing Grid-Connected Irrigation Pumps involves

converting conventional electric pumps into solar-powered ones, thus reducing the

electricity load on the national grid.

BENEFITS OF SOLAR POWERED IRRIGATION

Solar-powered irrigation has multiple benefits for farmers and the environment:

• Reduced reliance on fossil fuels: Solar energy is renewable and can replace diesel-

powered pumps, which are costly and polluting.

• Lower operational costs: After the initial investment, the cost of running a solar pump

is much lower than conventional pumps powered by electricity or diesel.

• Reduced carbon emissions: Solar energy is clean, helping reduce carbon footprints

and contributing to climate mitigation.

- Enhanced farm income: Solar pumps can help ensure a stable water supply, improving crop yields and, consequently, farm income.
- Improved energy efficiency: Solar-powered systems optimize energy use, leading to

better efficiency and sustainable farming practices.

• User-friendly operation: Solar pumps are easy to maintain and operate, reducing the

workload on farmers.

ADDRESS:

CHALLENGES & OPPORTUNITIES

Despite the numerous benefits, there are challenges to adopting solar-powered irrigation systems:

1. High Upfront Costs: The initial investment required for installing solar systems can be

a barrier, especially for small farmers.

- 2. **Difficulty in Accessing Credit**: Many farmers face difficulties in accessing finance, especially in rural areas where financial institutions are less accessible.
- 3. Electricity Subsidies: Subsidized electricity for farmers discourages the adoption of

solar pumps since it makes the transition to solar less financially appealing.

4. Groundwater Over-Extraction: There are concerns that the widespread installation of

solar pumps could lead to the over-extraction of groundwater if not managed properly.

5. Institutional Gaps: There is lack of institutional mechanisms for integrating solar

pumps with water-saving technologies.

- 6. Regional Variations: The uptake of solar-powered irrigation varies across different
 - regions, often influenced by factors like solar radiation, financial resources, and local awareness.

ADDRESS:

8

CONCLUSION

The PM-KUSUM scheme holds great promise for transforming India's agricultural landscape

by integrating **solar energy** into farming. It offers an opportunity to reduce dependence on

fossil fuels, lower operational costs for farmers, enhance agricultural productivity, and

contribute to environmental sustainability.

ENERGY SECURITY IN INDIA: ADVANCING RENEWABLE ENERGY & SUSTAINABILITY THROUGH KEY GOVT. INITIATIVES

- India's energy security is a fundamental aspect of its economic growth and sustainability.
- To reduce dependence on fossil fuels and promote a cleaner energy future, the government has rolled out numerous initiatives focused on renewable energy, grid stability, and carbon emission reductions.
- As of January 2025, India's total non-fossil fuel-based energy capacity has reached

217.62 GW, marking a significant achievement toward energy security.

• Key initiatives, such as the National Bio Energy Mission, National Green Hydrogen

Mission, PM-KUSUM, and PM Surya Ghar Muft Bijli Yojana, are at the forefront of

this transition.

These programs are contributing to both economic growth and environmental sustainability.

ADDRESS:

+918988885050 +918988886060 www.vajiraoinstitute.com info@vajiraoinstitute.com

RENEWABLE ENERGY CAPACITY IN INDIA

India has significantly advanced its renewable energy capacity, as demonstrated:

Sector	Installed Capacity (MW)
Wind Power	48,163.16
Solar Power	97,864.72
Small Hydro Power	5,100.55
Biomass Cogeneration (Bag <mark>asse)</mark>	9,806.42
Biomass Cogeneration (Non-Bagasse)	921.79
Waste to Power	249.74
Waste to Energy (Off-grid)	370.20
Total Renewable Energy Capacity	162,476.58

THE CDCC INITIATIVE

The **Centralized Data Collection and Coordination (CDCC) Wind Initiative**, launched in **June 2020**, aims to enhance wind energy development by improving wind resource assessment through accurate data collection and research.

ADDRESS:

8

Objectives

- Facilitate wind energy development by providing detailed wind resource maps.
- Support site identification for efficient wind energy projects.
- Encourage private sector investments and public-private partnerships.

KEY ACHIEVEMENTS

- Established over 800 wind-monitoring stations across India.
- The initiative has contributed to a 30% increase in India's wind energy capacity,

growing from **21.04 GW** in **2014** to **48.16 GW** in **2025**.

• The Union Cabinet approved a Viability Gap Funding (VGF) scheme of ₹7,453

crores for offshore wind energy projects off the coasts of Gujarat and Tamil Nadu.

NATIONAL GREEN HYDROGEN MISSION

• Launched in January 2023, the National Green Hydrogen Mission focuses on green

hydrogen production to reduce India's dependency on fossil fuels and position the

country as a leader in global green hydrogen markets.

ADDRESS:

8

Objectives

- Position India as the leading **global producer and supplier** of green hydrogen.
- Create export opportunities for hydrogen and its derivatives.
- Develop indigenous manufacturing capabilities for hydrogen technologies.

KEY ACHIEVEMENTS

- ₹19,744 crore allocated for infrastructure and technology development.
- Over ₹8 lakh crore in investments aimed at reaching 5 million metric tons of green

hydrogen capacity by 2030.

- Selection of manufacturers for 1,500 MW electrolyser capacity.
- India hosted key international events like the International Conference on Green

Hydrogen (ICGH - 2023) in New Delhi and 41st IPHE Meeting to foster collaboration

on clean hydrogen technologies.

NATIONAL SOLAR MISSION

 The National Solar Mission (NSM), launched in 2010, is one of India's flagship programs aimed at promoting solar energy adoption and addressing energy security challenges.

iges.

ADDRESS:

8

Objectives

- Establish India as a **global leader** in solar energy.
- Achieve 50% of the total electric power capacity from non-fossil fuel-based resources by 2030.
- Support solar technology diffusion across the country.

KEY ACHIEVEMENTS

- Solar power capacity increased from 9.01 GW (2016) to 97.86 GW (2025).
- India ranked **5th globally** in solar power deployment.
- Installation of 58 solar parks with a 40 GW sanctioned capacity (up from 34 parks

and 20 GW in 2016).

- Rooftop solar capacity grew from 90.8 MW (2016) to 11,503 MW (2024).
- As of March 2024, the **solar potential** of India stood at **748.98 GW**.

PM SURYA GHAR MUFT BIJLI YOJANA

- Launched in February 2024, the PM Surya Ghar Muft Bijli Yojana is the world's largest domestic rooftop solar initiative.
- The goal is to provide solar panels for **one crore households** by **March 2027**.

ADDRESS:

8

Objectives

- Encourage **rooftop solar adoption** in residential sectors.
- Provide financial incentives and subsidies for solar installations.
- Allow households to generate their own electricity, reducing dependency on the grid.

KEY ACHIEVEMENTS

- 7 lakh rooftop solar installations completed within 10 months of the scheme's launch.
- States like Gujarat, Maharashtra, Kerala, and Uttar Pradesh have made significant progress, showcasing strong infrastructure and collaboration.
- A 20-30% reduction in electricity bills for households with solar panels.
- The Model Solar Village scheme, with an ₹800 crore outlay, supports villages in promoting solar energy adoption, encouraging self-reliance in energy.

CONCLUSION

India's journey toward achieving **energy security** is propelled by an ambitious and dynamic renewable energy strategy. With significant investments and a range of government schemes such as the **National Green Hydrogen Mission**, **PM-KUSUM**, **National Solar Mission**, and **PM Surya Ghar Muft Bijli Yojana**, India is making remarkable strides in its clean energy transition.

ADDRESS: